

DPP No. 23

Total Marks: 28

Max. Time: 28 min.

Topic: Gaseous State

Type of Questions M.M., Min. Single choice Objective ('-1' negative marking) Q.1 to Q.5,8,9 (3 marks, 3 min.) [21, 21] Multiple choice objective ('-1' negative marking) Q.6 (4 marks, 4 min.) [4, 4] Short Subjective Questions ('-1' negative marking) Q.7 (3 marks, 3 min.) [3, 3]

- 1. If P, V, T represents the pressure, volume and temperature of gas respectively, then according to Boyle's law, which is correct for a fixed amount of ideal gas:
 - (A) $V \propto \frac{1}{T}$ (At constant P)

(B) $V \propto P$ (At constant T)

(C) $V \propto \frac{1}{P}$ (At constant T)

- (D) PV = nRT
- 2. If an ideal gas at 1 atmosphperic pressure, is spreading from 20 cm³ to 50 cm³ at constant temperature, then find the final pressure:
 - (A) 0.4 atm
- (B) 2.5 atm
- (C) 5 atm
- (D) None of these.
- A vessel of 120 mL capacity contains a certain mass of an ideal gas at 20°C and 750 mm pressure. The 3. gas was transferred to another vessel, whose volume is 180 mL. Then the pressure of gas at 20°C is :
 - (A) 500 mm
- (B) 250 mm
- (C) 1000 mm
- (D) None of these
- 5 L of a sample of a gas at 27°C and 1 bar pressure is compressed to a volume of 1000 mL keeping the 4. temperature constant. The percentage increase in pressure is :
- (B) 400 %
- (D) 80%
- 5. For a fixed amount of ideal gas at constant temperature, which of the following plots is correct:

6. For a fixed amount of ideal gas at constant temperature, which of the following plots is/are correct:

- 7. What should be the percentage increase in pressure for a 5% decrease in volume of an ideal gas at constant temperature?
- 8. In which of the following cases is the pressure of air in air column maximum: (Assume same length of Hq column in each case):

- Compare the values of pressure at different points in the given diagram: 9.

(A) $P_1 > P_2 > P_3 > P_4$ (C) $P_1 > P_2 = P_3 > P_4$

(B) P₁ < P₂ < P₃ < P₄ (D) P₁ < P₂ = P₃ < P₄

nswer Key

DPP No. #23

(A)

1. (C) (ABC)

(A) 5.26

(A) 3.

(B)

(C)

5. (A)

its & Solu

DPP No. #23

2.
$$P_1 V_1 = P_2 V_2$$

$$\therefore P_2 = \frac{1 \times 20}{50} \text{ atm} = 0.4 \text{ atm Ans.}$$

3.
$$P_1 V_1 = P_2 V_2 \Rightarrow 750 \times 120 = P_2 \times 180$$

 $\therefore P_2 = 500 \text{ mm Ans.}$

4.
$$P_2 = \frac{1 \times 2.5}{0.5} = 5 \text{ atm}$$

4.
$$P_2 = \frac{1 \times 2.5}{0.5} = 5 \text{ atm} \implies \therefore \% \text{ increase} = \frac{5-1}{1} \times 100 = 400\%$$

Given,
$$P_1 = P, V_1 = V, T_1 = T$$
 \Rightarrow $P_2 = P_2, V_2 = V - \frac{5V}{100}, T_2 = T$

$$P \times V = P_2 \times \left(V - \frac{5V}{100}\right) ; P_2 = \frac{100}{95} P \implies \therefore P_2 = 1.0526 P$$

$$P_2 = 1.0526 P$$

$$\Rightarrow$$